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Abstract
A memory re-allocation problem posed by (Knuth) and (Even,
Lempel, and Pnueli) is solved using lattice-theoretic techniques.
The problem involves finding the minimum cost relocation of stacks
in memory which will satisfy newv memory requirements. The number
of stacks currently residing in memory and the order in which they
are stored are assumed to be fixed. The solution requires '"time"
which is between linear and quadratic in the number of stacks.
In "well-behaved" multi-stack (or multi-orogram) environments,
the "time" to find a solution will be nearly linear in the number
of stacks.
The main result is ceneralized to show how lattices may be

extracted from permutation-graphs.
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0.0 Re-allocating Memory*

If the number and space requirements of various lists, tables,

pages, programs, etc. stored in a computer's addressable memory vary

with time and conticuous memory locations are used to store the contents

of each list, table, page, program or whatever; so that the lists,

tables, pages, and programs can be viewed as simple "objects' of varying

length distributed throughout memory then some scheme is needed to re-

allocate space whenever objects comnete for the same space or when new

objects need to be stored in memory. Specifically, it may be necessary

to move some of the objects "up" or "down" in memory, or "out" of
addressable memory to make room for each other's growth, or to make

room for new objects.

*A constrained version of this problem was given to A. Pnueli at
the Weizmann Institute, Rehovet, Israel by some designers of a large

multi-program computer. (Shimon Lven, Personal conversation, April,
1971.)




0.1 The Model

- All changes in length of any memorv object occur at one, and
only one, end of that object so that each object can be modeled by

a stack ().

-«—— Chances in leneth occur

Top
at top only

- Stack

Bottom L. |

All stacks in memory are oriented in the same direction, so
that the address of the hottom of a stack is always less than or

equal to the address of the top of the stack (¥).

The current content of memorv consists of n stacks, labeled

with the intecers 1,2,...,n starting from the bottom of memory

Mermorv

(E,L,&P).
Top of } e e
Memory
— ——--——==—Top of stack
‘ Stack
#in
Increasing| — —-—Bottom of Stack #n
Addresses
Stack
#2
Stack
Bottom of} 71

Addressable Memory



The allocatable portion of memory is bounded by two addresses.*

= constant: the bottom of memorv; the address of the
first available location in memory

»
jot
i

= constant; the top of memory: the address of the
first location which is not allocatable

b
1

n+l

Thus stack #1 is not relocatable but can have varyine length.

Stack #(n+l) is not relocatable and is 'dummy'" in the sense that

its lencth is irrelevant to the re-allocation problem.

Stack
# (n+l)
( X 41 -— Ton of memeory
o (Fixed)
Stack
Allocatabl In
Memory Xn
/M
Stack
1
xl - Rottom of memory
(fixed)

*These boundary conditions, which differ sliehtly from those used
bv (K), or those sugrested bv (E,L,&P), were chosen because they are
more consistent with the model being formulated.



The current memory confipuration is described by the following

sets.

Nr = {2,3,...,n} is the set of relocatable stacks,

where the intecer ie N, is the

label of the 1th gtack from the
bottom of memory.

X_ = {xz,x3,...,xn} is the set of starting addresses
of the relocatable stacks, where
X; € Xr is the startine address

of stack 1 € Nr'
L = {21,27,...,2n} is the set of leneths of the

variahle len~th staclks, where
Ej ¢ L is the non-nesative

current lenath of stack
ie NrL){l}.

address of

+
next word Xi ni
above stack top
Stack
At Qi length in words
address of % bottom
first word i

in stack

Viote that the mndel allows stacks of leneth zero. Thus 1f

2y 0= 0, then it is possible that x in other words,

17 %418

empty stacks do not occupy space.



After a certain amount of time the memory requirements of
the n variable lenpth stacks currently residing in memory change,
and it may be necessarv to relocate some of the stacks to accorodate

the new memory requirements. The new memory requirements of the n

]

stacks are specified bv the set L' = {Qi,kz,...,

2'}, where
n
Ri ¢ L' is the new lensth (memorv requirement) of stack

1 e N_U{1) (E,L,87).°

0.2 A Cost Function

w 1is anv non-negative function vhich assigns to each relocatable
stack in addressable memory a cost of relocation which is independent
of the distance moved.** Thus w{i) is the cost of moving stack
ie Nr to some other part of addressable'meﬁory. If a
re-allocation of memory reauires that a sct of stacks SrEENr be
relocated (and thus that the set (Nr-Sr)L){l;n+l} remain in place),

then the cost of re-allocation is z w(i) (E,L,&P). Occasionally
c ieS
T

the notation w(S) will be used where w(S) 1is defined to be

yow().
ieS

*, and L' distingenish the current from new (or '"successor")
memnry requirements. Tn all other cases, the nrime svmbol will
indicate the modification of a set to include reference to alements
1 and n+l. TIxample: If N <N is a set of stacks, N' =

r 9y
NU{1,n+1}.

**This constraint on the cost function reflects the behavior of
"move" and "block transfer' instructions on most contemnorary
comnruters. The time reauired to move a stack is linear with leneth
(of the stack) on almost all machines.



0.3 Relocation Without Re-ordering
The definition of the re-allocation problem adonted by (X)

and (E,L,&P) imposes the following constraints:

1) the number of stacks in addressable memory remains fixed;
2) the order that the stacks are stored in addressable memory
remains fixed.
Thus the memory re-allocation problem reduces to a problem of

relocation without re-ordering.
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1.0 Finding a Minimum Cost Re-allocation

1.1 The Optimization Problem

Given the model specified in 0.1, the memory relocation problem
can be formulated as a discrete optimization problem. The problem is
to choose a subset Sr of the set of relocatable stacks Nr which

minimizes the sum |} w(i) and which does not violate the constraints
ieS
r

(1)~-(4) below.

1) Constant Number--n, the number of variable leneth gtacks,
remains fixed (1).

2) Constant Order--the order in which the stacks are stored
in memorv remains fixed (X).

3) Capacity--It is alwavs true that

n
z 2! < (X, ,=%y).
1=1 i n+l 71

(0Othervise, the new memory requirements exceed
the capacity of memorv (¥,L,&P).)

4) Yo Overlap--let S; =(Nr—qr)L){l,n+l} be the set of stacks
which remain stationarv. Then it must always be true

that if 1, ¢ S! and 1 < i, then
s

1-1

Yoo

< (x,-x%,).
k=1 - I

P

The "no overlap' constraint asserts that between any two
stacks 1 and j which are not relocated there is
enouch room for the new memorv requirements of stacks

1,4+1,...,3-1 (%,L,&P),
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Alternatively, a subset SSGENr, a subset of relocatable stacks
which are to remain stationary, can be chosen which maximizes the sum

z w(i) and which does not violate the constraints (1)-(4), Where
ieS
s

Sé = Sq(){l,n+l} is used to define S; in constraint (4).

Elgiﬁ; The problem of findine a set of stacks Ssg;ﬂr which can
remain stationary, and which has maximum relocation cost, is the
dval of the problem of finding a set of stacks SrEENr to he
relocated wvhich has minimum relocation cost.

Proof. N = S YsS and N is fixed.
r r s r

Definition: Given sets Xr and L', the ordered pair M = (Xr,L‘)

is a memorv relocation problem.

Definition: Given a memory relocation problem M, a solution (i.e.,
. . *
a solution to M) is a maximal set of stacks SS‘ENr which can

remain stationary.

Definition: Given a memory relocation problem M and a relocation

cost function w, a relocation optimization »nroblem is an ordered

pair (w,M).

*Given a set § and a predicate P, S is maximal under T if
and only 1f P(S) and 3 no set T such that S<T and P(T),
where ¢ denotes proper contaiunment.
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Definition: Given an optimization problem (w,M), a solution

¢ N to the relacation problem *, has maximum relocation cost
T : :

if and only if for all solutions TvEEYT to M,

L ow@w)| > I w(i)

ieS ieT
s s

Definition: Given an optimization problem (w,M), a max-cost solution

is a solution ng&Nr which has maximum relocation cost.

Proposition 1: Given only a cost function w --for all subsets of
stacks SSEENr, there exists a memory relocation problem M, such
that SS is a max-cost solution to the relocation optimization
problem (w,M).

Proof. Choose™ the sets Xr and L' so that Ss is the only

solution to M = (Xr,L'), and then Ss is necessarily the

max-cost solution to (w,M).

Proposition 1A: Given "condition X" (see below), a cost function w,
and a set of starting addresses Xr; for each subset of stacks
szgﬁr, there exists a set of new memory recuirements L' such
that Ss is a max—cost solution to the relocation optimization

problem (w,M), where M = (Xr,L').

*Assuming (xn+l—x1) > n, where n 1s the number of variable

lenpth stacks.



‘same starting address and
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Condition X: For most sets X, likely to arise in practice "condition

X" can be eliminated from Proposition 1A. It could probably be

eliminated entirely if the memory reallocation problem were peneralized
to allow stacks to disappear when empty (i.e., generalized to let n
be variable) , since most of the anomalies occur when several stacks
are -empty or when the number of stacks approaches the number of
storage locations in memory. In any case, condition X 1indicates
that the current problem definition is not entirely free or
redundancy (since it is reasonable to expect that the set 'Xr is
available long before the set L', and for some sets Xr not
every solution Ssger is possible).

The version of condition X below is sufficient, but certainly
not necessary, for Proposition 1A to be true. The proof given
below is, accordinely, less satisfying than one which.employed a
necessary, as well as sufficient, condition X,

"Condition X" is true if and only if no two stacks have the
(xn+l-xl) >> n, where n 1is the number

of stacks.
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Proof of Proposition lA: Consider two cases.

d) SS = . (All relocatable stacks must be relocated.)
Choose Ri = 0, and choose Qé,ﬁé,...,ﬁé so that

stacks 2,3,...,n must all be moved down. ™
(11) SS # #. (Some stacks can remain stationarv.)

i

choose 25 large enough so that all such stacks j have

- ' = -
Vy € S;J{l} choose ¢ 0, and then Vg e(N_-S )

Yo

to be moved down.”

Since, in both cases, Ss is the only solution (by construction)

it is the max-cost solution.

*Note that in the case where 21 already is zcro and X, = x1+1,

then the solution §_ = f does not preserve condition X since after

<

relocation xl = X,
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1.2 Defining the Solution Lattice

ngigig{ggg:* A relation & in a set A is a strong order relation
if and only 1f it is irreflexive and tramsitive: a relation 2/ in A
is a weak order relation if and onlv if it is reflexive, anti-
symmetric, and transitive. An ordered set is a triple <A,%,9¢>
consisting of a set, and corresnonding strone and weak order
relations. A weak order relation 9 in A 1is linear if and only

if (Va,b e A) a2fb or bPfa, a strone order relation is lincar

if and only if (Y a,b e A) a%b, a=b, or bFa.

Definition: (E,L,&P) For a given memory relocation problem M = (Xr,L'),
define a binary relation R on the set N' = er){l,n+i} as follows:

for i,} € N', Xi,X; € X', where X' = Xrl){l,n+1}, £L e L', and

j
1<3,
j=1
(1,3) € R @-»{[kzizk] 5<(xj-xi>}.
For i > j,
i~-1 ’
(1,j) e R == {szlg] < (Xi-xj)}.

The relation R will occasionally be written as R(M), or R(Xr,L')

to emphasize that the relation encodes a specific relocation problem.

*The algebraic definitions used in this section are from (G) Chapter 6.
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Claim: The relation R is irreflexive, symmetric, and transitive.

> >

Claim: Given M, R and Rr are corresponding strong and weak
>

order relations where R = {(4i,j) | i <j and (1,3) € R(M)} and

>

Ro=R+ (@1 | 1enN

Claim: Given N, <N',§,ﬁr> is an ordered set.

Claim. Given M, there is at least one subset of stacks S'SN'
such that <S',§ nes' x S'),fir N{s' x 8')> is a linearly ordered set.
Proof. By constraint (3), (Capacity), S' = {1,n+l} 1is such a

*
subset.

Proposition 2: Given M, let S<N' be any subset of stacks such

> >
that |S| » 2 and <S,R0(S X S),Rr(W(S x 8) is linearly ordered.

For all pairs of stacks S1985 € S, such that 51 < Sy» Sy and 8,y

need not be relocated relative to each other, that is, there is room

for the memory requirements of the s -8y stacks 158 +1,s

2 1

]T+2’ooo,82—l

between sy and sz—l inclusive.
Proof. If S 1is a linearly ordered set, then R(M) 1s satisfied
for all pairs of stacks in S. Thus no relocation is necessary for all

pairs in S relative to each other,

*1f s' = {1,n+1} is the only such linearly ordered set, for a given
M, then the solution (and max-cost solution) SSESNr to the problem
(w,M) 1is Sg = f, the empty set.




Comment on Proposition 2:

1) 1f !S| > 2, then, in peneral, some of the stacks between

S1 and Sos exclusive, will not be elements of S,

2) in which case, they must be relocated if 51 and Sy are
to remain in place,
3) and the fact that any such stack lies between two linearly

ordered stacks, 1 and Sos implies that there is

sufficient space for a successful relocation of all stacks

vhich are between 51 and exclusive, and not in S,

82,

vhile s and s remain stationary.

1 2

Proposition 3: Let S; = SS(){l,n+1} where S,EN_ is any subset
of relocatable stacks. Given a memory relocation problem M,
<S;,§ n(S; x S;),ﬁrlﬁ(SQ x S;)> is a maximal linearly ordered set
if and only if Ss is a solution to M.
Proof. (=) If S; is linearly ordered, then by Proposition 2
no element of S; needs to be relocated, since 1l,n+l ¢ S;. If S;
is maximal, then no properly containing set can remain stationary.
Therefore, SS is a solution,
(e==) If Ss is a solution, then all pairs in S; satisfy R(QD),

so that S; is linearly ordered. Thus, Sé is a maximal set with this

property by definition of "solution."
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Definition. Let % be a weak order relation in A and let BZSA.
The element ¢ € A 1is an upper bound of B if (Vb ¢ B) b2rc.
Similarly, d is a lower bound of B if (¥b ¢ B) d?/b. If there

exists at most one upper bound < of B such that for all upper

bounds ¢ of B, COQWC, then o is the supremum of B, or sup B.

Similarly, if there exists at most one lower bound d, of B such

0
that for all lower bounds d of B, d@Vdo, then d 1s the infinum

of B, or inf B.

Definition. An ordered set <A,&% 9> 1is a lattice if and only if

each two-element subset of A has both a sup and inf,

Definition. Given a memory relocation problem M, an augmented

solution is a solution te M vplus the stacks 1 and n+l. Thus,

if S 1is a solution, S; = Ssu{l,n+1} is an augmented solution.
s

23f3ﬂ£§193} Given M, let

NL = {ienN"| ']Sé<:N' such that 1 ¢ $'}
: s

where S' is anv auemented solution to »

ere 5, is a f, and W' = N_U(1,n+1}.
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Pronosition 4: The triple

qt o t 1y & ] ]
<NpLR O x N)),R NN x Np)>

is a lattice.

Proof. Let T = {a,b} be any two-clement subset of Hé.*
Assume a < b, Fither a and b lie in the same augmented
solution, or in different augmented solutions.

If they lie in the same augmented solution, then under the
weak order relation ﬁr’ sup{a,b} = b and inf{a,b} = a.

If they lie in different augmented solutions, then (a,b}
always has at least one upper bound, the element n+l, and at least
one lower bound, the element 1, under the relation ﬁr' Thus
there is always a unique least upper bound and a unique greatest
lower bound, since Er is antisymmetric. In other wo;ds, in the
case where stacks a and b are in distinct augmented solutions,
sup{a,b} is the least stack above a and b common to both
augmented solutions, and inf{a,b} 1s the greatest stack below a

and b common to both augmented solutions.

*Again by the capacity constraint, for all M, [N'| > 2,
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Definition. Let the lattice defined by the sct N' = {1,2,...,n+1}

and the relation ir(M) be called the solution lattice.

e
Claim. Given Rr(M) and constraints (1)-(4), there is one and

%
only one solution lattice.

*Note that this assertion of uniqueness requires the fact that
the elements of thr lattice are labeled with integers.
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1.3 Constructine the Solution Lattice

Let the non-identical pairs of elements of the set

N' = {1,2,...,n,n+l} be arranced in rows as shown helow.

Row 1
Row 2

- Row 3

Row n-2
Row n-1

Row n

”Interipr Pajirs™

WL\ (2,3) ... (1,iH) ... (@l 7 (n,nHl)

(1,3) (2.8 ... (1,142) ... (p-2,n) / (n-1,n+1)
(1.4)  (2,5) . . . (n~-3,n) (n-2,n+1)
\"\ .
. \\\ L]
. . .

ower T\ / . "Upper
Pairs" \\ . , Pairs"
Pairs ‘ . , ., Pairs

N\
(1,n-1) \\{?,n)/// (3,n+1)
(1,n) (2,n+1)
(1,n+l1)

Data Base for Solution Lattice Algorithm

In Row k, all pairs (i,i+k}, for 1 < i < [(n+l)-k], appear

arranzed in ascending order of left element. Let each pair [Yi,j)]

represent the nredicate, "eiven an M, the pair is an element of

> "t
Rr’ i.e.,
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Proposition 5: Given M, for all i € Nr’ if either f(l,i)] or
f(i,n+lf] are false, then stack i cannot be a member of a linearly
ordered set containing stacks 1 and n+l; that is, it cannot be in
a solution to M.

Proof. Assume [kl,if] is false and that 1 ¢ SS, where S,8
is a solution to M. Then 1 ¢ Sé = Ssl){l,n+l} which is linearly
orde;ed, contradicting (1,1i) ¢ ir(M). Similarly, if [Ki,n+lf] is
false, and 41 1is a member of a solution SS, then 1 ¢ S; =

Ss(){l,n+l} which is linearly ordered,contradicting (i,n+l1) ¢-§r(M).

Alsorithm for Constrnctine the Solution Lattice

The algorithm constructs the solution lattice proceedine row

by row coloring pairs according to the followine scheme.

Green--A pair (i,j) 1is colored green if (i,3) € ﬁr(ﬁ), and there

are no pafirs (1,k),(k,qd) ¢ ﬁr'

transitivity (namely, there are pairs (i,k), (k,j) ¢ ﬁr(ﬁ)).

Red—-A pair (1,1) 1s colored red if (1,1) ¢ 'ﬁr(m.
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-
Black--A '"lower pair”* (1,3) shall be colored black if (j,n+l) £ RQD),

%*
i.e., (j,n+tl) is colored red. An "upper pair" (j,n+l) shall

be colored black if (1,§) ¢ R(), i.e., (1,j) 1s colored red.

An "interior pair"® (i,3) shall be colored black if any of

(1,1), (1,j), (i,n+l), (j,n+l) fail to be true, i.e., if any of

them are colored red.

Rule: TIf a pair is colored more than once, the nmost recent coloring

takes precedence.

Initialization: Color the pair (1,n+l) green since constraint (3)

specifies that memorv itself cannot overflow.

Solution Lattice Alporithm:

INITIALIZE: k<0
INCREMENT : k « k+1 «so k 1s Row index

LOUER.PAIR: If (1,1+k) is already black, pgo to UPPER.
PAIR. Otherwise, color (1,1+k) ereen or red as
appropriate. If (1,14k) is red, color (1+k,n+l)
and all interior pairs (i,14k) and (1+k,i) black
regardless of row or prior color.

UPPER,.PATR: If (ntl-%,n+l) 1is alreadvy black so to
INTERINR,PAIRS. Otherwise, color (n+l-k,n+l1) ereen
or red as annrovriate. If (n+l-l:,n+l) {1is red,

. color (1,n+l-k) and all interior pairs (i,n+1-k)

and (n+1-k,1i) black revardless of row or nrior color.

*see diagram at beprinnine of Section 1.3,



INTFRINR,PATIPS: (nlor the non-colored (i.e., non-black,

non-vellew) vairs (i,34k), 1 ¢ M, oreen
v ) r
or rad as appropriate.

TRANSITIVITY: Tn all rows k', vhere ' > k, the
row index, color vellow all pairs vhich are true

bv transitivity.

TEST: If (1,n+l) enlored vellow then oo
to DOME., If k = n-1 then go to DONE. Otherwise,

- ro to INCRVMENT,

DOMT: Stop.

Claim. Given that the solution lattice alporithm has terminoted,

let
N={ieM | (i,5) or (j,i1) colored qreen}.

Then <N,§ el ox N),ir(](N x N)> 1is the solution lattice.
Proof: (of correctness of alrorithm)

Follows from...
)) Provosition 5.
2) Definition of colors.

3) Order in which rows of pairs are colored.
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1.4 Searching the Seolution Lattice

Assume the solution lattice alrorithm has been applied.

Definition. A sequence of vpairs is a non-emnty ordered set of
pairs (1,3j), where the left element of the first pair is 1
and-the richt element of the last pair is n+t+l and every
adjacent pailr of pairs in the sequence is of the form

1,1 G,k .

Example: SP = [(1,3),(3,4),(4,9),(9,10)], vhere n = 9.

Definition. {SP} = {1 ¢ X' | (1,3) or (§,1) € SP} where £P

is a sequence of pairs.

E}g}m; Let SP be a sequence of vairs. {SP} is a maximal
linearly ordered set if ard onlv if each pair in SP 1is colored
green.

Proof. Given correctness of solution lattice aleorithm,

the claim follows from definition of sequence of pairs.

Definition. The smallest interval and lareest interval are,
respectively, the green pair (1,j) such that j-i is minimum
over all gsreen pairs, and the green rair (k,%2) such that

2~k is maxirum over all green pairs.



Claim. If (i,1) 1is a smallest interval and s 1is the index of

fi

the least row containing a creen pair, then s j-i. Similarly,
g2 = j-i 1if (i,j) 4is a largest interval and % 1is the index of

the greatest row containing a green pair.

- At this point at least two alternatives present themselves.
Fither the solution lattice can be searched for a maximum cost
solution, or the lattice constructor algorithm ( Section 1.3) can
be modified to search for a max-cost colution as it constructs
the solution lattice. In the former (two-pass) case, the smallest
and largest interval can be used to cﬁt down on the search.
Specifically, if the lattice constructor algorithm calculates

the largest interval I then for a given ereen interior nair

X
(i,j)r one need only search for creen péiré (j,k) where

j <k < j+Iz—l. In the latter (one-pass) case, the modifications
to the lattice constructor algorithm are ag follows. In order to
search for .a maximum cost solution simultaneously the algorithm
must associate with each interior pair (i,j) which is colored
green an "up cost' and ''down cost.'" These two costs are simple
w({SPu})max and w({SPd})max, respectivelv,wheré SPu and SPd
are (possibly emnty) partially formed sequences of pairs from the
ereen pair (i,j) to, resmectively, the preen palra (k,n+l)

and (1,g). Thus, if at some point of the construction of the

solution lattice there are one or more partial sequences of green
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pairs to the top or bottom of memory from a given green pair one
can associated with that pair a cost which is maximum over the
partial sequence of pairs. As partial sequences become
sequences one need only keen the largest cost solution found up

to that point.
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1.5 Time and Space Bounds

Definition. One unit of time is required by the lattice constructor
algorithm to evaluate (color) one pair. (All other operations will
be assumed to consume an amount of time which varies neither
with respect to the complexity of a particular prcblam or the

number of stacks in memory.)

Definition. One unit of memory is required to store one pair and

all necessary information about that nalr, such as its color,

Assume for simplicity that the entire triangle of pairs is
stored for manipulation bv the lattice constructor algdr{thm.
(Certainly no more than kné “units of memorv'' will be required to
store fhis array, where n is the number of stacks currently
residing in memory.)

Consider two relocation ontimization problems, O1 = (w,Ml)
and 02 = (w,Mz). Let Ml = (Xr’L') be such that no relocation
is required to accomodate the new memory requiremeﬁts L'. Thus
the solution SSV (which is also tHe onlv solution and thus'the
max-cost solution) is the set Nr --all the stack? can remain in
place. The lattice constructor alsorithm will reauire n tine
units to find this solution (the alrorithm halts after examinine
one row). Ve can represent the solutfon as a grn~ph on the set

NrU{l,n+1}. Adjacent stacks in the solution are connected by a

sinele edre.



w ..r——ng———ﬂ‘E'

Solution to 0l

Let M be such that there are

R ! = n-1 solutions.
2 ¥

The eraph for this case is

Solutions to 0O,
4

)
n+1l)  enumerates a

where each two-edpe path from node (D to nale
solution.
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In other words, any stack 1 ¢ Nr can remain in place but the set
Nr - {i} has to be relocated. Yote that no palr can be colored
syrecen by transitivity, (The pair '(l;n¥1) is ereen initiallv.)
Thus every pair in every row must be evaluated by the lattice

constructor algorithn, This will consumne k(-—~->——-) time units.

Claim. Given that the entire triangle of pairs is stored, 01
and 02 represent achievable lower and unner bounds on the "time"

to construct the solution lattice.

Note that by information theory at least 10925?(Hr) =
loaz(Zn—l) = n-1 binarv decisions are required to find a (max-
cost) solution, where & denotes the power set, Thus the lower
bound on time comes within one time unit of achievine the
theoretical minimum time, assuming one binary decision per time

unit,



2.0 A Granh Theoretic Result

2.1 Defininz a Permutation Grarh

Definition. Let P = [PQLY,P(2),¢..,P(n+1)] be a permutation of

the positive integers 1,2,...,n+l, Tet N' = {1,2,...,n+l} and

N be a subset of N' x N' defined as follows:

MT={¢,5) | [{ <j and plesy > P'l(j)]

or [1>j and Ph(1) < PR
where P—l(i) is the element of MN' which P maps into 1.
Definition. A permutation eraph GE', 1) 1s an undirected granh

vhose vertices are 1,2.....n+tl1 and whase cdpes are specified by

the relation 1.

Theorem (E,L,&P): Given the relation ® as defined In Section 1.2,

.GM' . R) 41is a permutation granh.
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2.2 Lattices Embedded in a Permutation Graph »

Din.n.i;t;j‘.o.Q' Given a '-‘Ufr'i)"rh C(”,R).. two vertices i,'j e N are
adjacent if (i,i) e R,

Dafinition. Tet 1 and j be two adjacent vertices, such that

i < j, 1in a permutation eranh G(N',R). let

Gg = {k | k is a vertex on an ordered path® from 1

to 3, dinclusive, in GO ,R)}.

Theoven. If i, ﬁr and G2 are as defined previouslv,

=
2 0
<G, B 0(C, x G,) ,iirn(cz x G,)>

is a lattice.

Comment. The theorem above asserts that the ordered paths between

two adjacent vertices in a permutation praph form a lattice.

Proof. An ordered path is a linearly ordered set under R
-
and Rr' Thus the theorem is simply a generalization of

Pronosition 4. _

*orderad paths =» a nath on which the vertices are rassed in
ascending or descending order of their vertex lahels.



(£,L,&P)

(6)

(K)
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